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Abstract

We study the concept of co-amenability for a compact quantum group. Several conditions are
derived that are shown to be equivalent to it. Some consequences of co-amenability that we obtain
are faithfulness of the Haar integral and automatic norm-boundedness of positive linear functionals
on the quantum group’s Hopf-algebra (neither of these properties necessarily holds without
co-amenability). © 2001 Elsevier Science B.V. All rights reserved.
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1. Introduction

In this paper we introduce and study a concept of co-amenability for compact quantum
groups defined in the sense of Woronowicz [19,20] — see also [14] for an exposition
that provides much of the background for this paper. Co-amenability of so-called regular
multiplicative unitaries have been introduced by Baaj and Skandalis [1, Appendix; 6]. One
can then proceed to define co-amenability of a compact quantum group by requiring that
the regular multiplicative unitary associated to its reduced quantum group is co-amenable.
However, theC*-algebra formulation of compact quantum groups is more accessible than
the theory of multiplicative unitaries, which is technically quite involved. We therefore
feel that it is worthwhile and appropriate to present a direct definition of co-amenability,
which is perhaps more intrinsic to th@&*-algebra theory of compact quantum groups.
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The Baaj—Skandalis approach to co-amenability for compact quantum groups has been
rephrased by Banica [2,3] to accommodate this, but details are deferred to Baaj—Skandalis’
work. Our exposition starts from an elementary remark of Woronowicz [19, p. 623] and is
aimed to be self-contained. To motivate our definition we briefly discuss here the concept
of amenability for a discrete group and its equivalent formulations in terms of the group
C*-algebras [16,17].

If I" is a discrete group, its reduced and full gradp-algebrasCj(I") andC*(I") can
be endowed with co-multiplications, andA making them into compact quantum groups.
Details are given in Section 2. We shall call these tteduced and universal compact
quantum groups associated with The Haar integrals ofC; (I"), Ar) and (C*(I"), A)
are the canonical tracial states. Since the left kernel of the trac&*6f) is the kernel
of the canonicak-homomorphisn® from C*(I") onto C;(I"), faithfulness of the Haar
integral of(C*(I"), A) is equivalent to amenability af'. Of course, we are using here the
well-known equivalence of amenability éf and injectivity of6; this result is often called
the Hulanicki—Reiter theorem in the literature. The co-uni{f@f(I"), A) is norm-bounded,
but that of(C}(I"), Ar) may not be. In fact, it is known thdt is amenable if, and only if,
the co-unit of the latter is norm-bounded. This is essentially a reformulation of the classical
result thatl” is amenable if, and only if, the trivial one-dimensional representatidn isf
weakly contained in the regular representation.

This discussion serves to motivate our introduction of the concept of co-amenability for
a general compact quantum group and we shall frequently refer back to these examples for
the purposes of illustration and motivation of the results we obtain in the sequel. We define
a compact quantum groupi, A) to beco-amenable if the co-unit of its reduced compact
guantum grougA,, Ay) is norm-bounded (see Section 2 for the definition &f, A;)). If
a concept is to be a fruitful one in an abstract theory, it is desirable that it have a number of
different formulations. Indeed we show that co-amenability is equivalent to several other
conditions; one of these equivalences is an analog of the Hulanicki-Reiter theorem (see
Theorem 3.6), which establishes the link with Banica’s definition. One particularly nice
condition ensuring co-amenability of acompact quantum group is the existence ofanon-zero
multiplicative linear functional on its reduced quantum group (Corollary 2.9).

A co-amenable compact quantum group has a number of desirable properties not pos-
sessed by arbitrary compact quantum groups. We show for example, that a co-amenable
compact quantum group has a faithful Haar integral (it then follows that the Haar integral is
a KMS state [11,12]). If a compact quantum group is not co-amenable, then the co-unit on
the Hopfx-algebra of its reduced compact quantum group provides an example of a positive
linear functional that is1ot norm-bounded. However, we show that every positive linear
functional on the Hopk-algebras of a co-amenable compact quantum group is necessarily
norm-bounded (Corollary 3.7).

The use of the wordo-amenability deserves some explanation. First recall that amenabil-
ity of Kac algebras [7] is defined in terms of the existence of an invariant state. If we define
amenability of a compact quantum group in these terms, namely by requiring only the
existence of an invariant state, then all compact quantum groups are trivially amenable,
since the Haar integral is an invariant state. Thus, this is not a satisfactory definition. On
the other hand, the natural concept of amenability for discrete quantum groups makes good
sense — we study this notion in a forthcoming paper [5]. There is a relationship between
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co-amenability of a compact quantum group as defined in this paper and amenability of
the associated dual discrete quantum group. The chosen terminology is aimed to reflect
this dual relationship. It also fits with the one introduced by Baaj and Skandalis [1] for
regular multiplicative unitaries. Note however the slightly confusing fact that Banica [2,3]
uses most of the time the word amenability instead of co-amenability for compact quantum
groups (which he calls “Woronowicz algebras”).

The paper is organized as follows. In Section 2 we construct the reduced quantum group
corresponding to a compact quantum group and use itto define co-amenability of the original
compact quantum group. We then derive conditions equivalent to co-amenability and show
that itimplies faithfulness of the Haar integral. As an application of the ideas in this section,
we give a new proof of the theorem of Nagy on faithfulness of the Haar measure of quantum
SU(2) [15]. In Section 3 we consider the universal compact quantum group associated to
a compact quantum group and obtain other conditions equivalent to co-amenability; in
addition, we prove the norm-boundedness result for positive linear functionals alluded to
above. Our final section, Section 4, is a short one in which we explore the idea of a bounded
co-unit in the context of a compact quantum semigroup and show that if the latter admits
a faithful Haar integral and a bounded co-unit, it is necessarily a co-amenable compact
guantum group.

For the ease of the reader, our account is quite detailed and we provide proofs of several
important results which are presented in a rather sketchy manner in the literature. Espe-
cially, we give in an appendix a proof of the uniqueness property of the associated dense
Hopf x-algebra of a compact quantum group. This useful property is stated without proof
in [11].

We shall use the convention th¥it® Y represents the algebraic tensor product wkien
andY are simply linear spaces, gralgebras that are nat*-algebras; ifX andY are Hilbert
spacesX ® Y represents the Hilbert space tensor product axdahdY areC*-algebras,

X ® Y represents the spati@l-tensor product [13, Chapter 6].

2. Thereduced quantum group

Throughout this sectiofA, A) denotes a compact quantum group. Its Haar integral is
denoted byh. The associated Hopf-algebra is denoted by, the co-inverse by and
the co-unit bys. Recall thats and« are, in general, only defined o#. One can describe
A by saying it is the unique Hop#-algebra for whichA is a dense unitat-subalgebra
of A and the co-multiplication ofd is obtained by restriction of the co-multiplication of
A. The reader may find some basic definitions and a proof of this uniqueness property in
an appendix to this paper. We refer otherwise to [14,20] for the basic theory of compact
guantum groups.

Let (C(G), A) be a commutative compact quantum group associated to a compact group
G, the co-multiplicatiomA being dual to the group multiplication operatién< G — G. In
this case the Haar integrialis the integral with respect to the Haar measur&oihis has
full support and therefork is faithful. Faithfulness of the Haar integral no longer holds for
an arbitrary compact quantum group. To illustrate this we return to the grétglgebras
of a discrete group and discuss them in a little more detalil.
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Let I" be a discrete group and I&t: x — L, be the left regular representation Bf
on ¢2(I"). Thus, if (8,)xer is the canonical orthonormal basis &f(I"), Ly (3y) = 8yy.
Let Ay = Cj(I") be the reduced grou@*-algebra ofl"; that is, A, is the C*-subalgebra
of B(¢3(I")) generated by the operataks (x € I'). The linear map, defined on4, by
Ar(Ly) = Ly ® Ly for all x € I', is a co-multiplication ofA,. (To see thatA, is well
defined, observe that there is a unitary oper#itan ¢2(I") ® ¢2(I") forwhichL, L, =
W*A® L)W forall x € I'; W is defined by settingV (6, ® 8,) = 81y ® 8y for all
x,y € I') Itis easy to see thatd; ® 1) ArA, and(1 ® A;) A, A; each have closed linear
span equal tal; ® A,. Hence(A;, Ay) is a compact quantum group.

It is well known thatC(I") admits a faithful tracial state tr given by(Iry) = 0, if x is
an element of " that is not equal to the unit df. In fact, tr is the Haar integral gfA,, Ay)

[14, Example 10.4]. The dense HopfalgebraA, of (Ay, Ar) is the linear span of all the
unitariesL, (x € I'). It may be identified with the group algebt4 /") of I" equipped with
its canonical Hopf-algebra structure.

The full groupC*-algebrad, = C*(I') is, by definition, the enveloping*-algebra of
the Banachk-algebrazl(l“). By constructionC(I") is dense inA,. Therefore,I” admits
a universal unitary representation,: I — Ay, x — V, such that the linear span of the
elementsV, is dense inA,. A co-multiplication onA, making it into a compact quantum
group is determined by first settint(Vy) = V, ® V, for all x € I', and then extending
to Ay by its universal property. The HopfalgebraA, of (Ay, A) is the linear span of the
elementsV,, and it too may be identified witG(I").

By the universal property af*(I") there exists a canonical surjectivdromomorphism
6 : Ay — Ar mapping eaclv, onto L,, hence mappingl, onto.4;. The Haar integral on
Ay is the canonical tracial state df, given byh = tr o 9. Its left kernelNy, is clearly the
kernel ofd, soA; = Ay/Ny. Again using the universal property 6f (I"), we see there is a
x-homomorphisnz from A, to C such that (V,) = 1 forallx € I'. A simple computation
shows that is the co-unit for(A,, A). (More precisely, the restriction afto the Hopf
x-algebra of(A,, A) is the co-unit.) The important point here is tlads norm-bounded.

The group” is amenable if, and only if; is injective, and the co-unit @, (I") istherefore
norm-bounded inthis case.flfis notamenable, this co-unitis not norm-bounded, as pointed
out in Section 1. In the case that = F, the free group on two generators, one can see
the co-unit ofC;(I") is not norm-bounded by means of the well-known fact @atl") is
simple (and not one-dimensional!) and therefore admitgs-homomorphism ont&.

Suppose now thatd, A) is an arbitrary compact quantum group with associated Hopf
x-algebraA. It is known [20] that the Haar integral @f4, A) is faithful on A, but as we
have seen, in general, not on ié-algebraA. We will now furnish aC*-algebra envelope
of the Hopfx-algebraA for which the Haar integral is faithful. Recall that the left kernel
Ny, of h is a two-sided ideal oAt [20]. SetA; = A/N,, and letd be the quotient map from
A onto A;. We shall maked, into a compact quantum group. This reduction procedure is
sketched in [19], but no details are given there, or anywhere else in the literature that we are
aware of. Since this is an important construction for this paper we give the required details
in the following result.

Theorem 2.1. If (A, A) isa compact quantum group, then the C*-algebra A, can be made
into a compact quantum group whose co-multiplication A, is determined by A;(6(a)) =
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(6 ® 0)A(a), for all a € A. The Haar integral of (A, A;) is the unique state i, of A,
suchthat 4 = hy o 6. The state A, is faithful. Also, the quotient map 6 is faithful on .4 and
the Hopf x-algebra of (A, Ar) is6(A), with co-unit g, and co-inverse «; determined by
e =¢gro6andb ok = ko6, respectively.

Proof. To show that we can definesahomomorphisma, : A, — A; ® A, such that
Ar(6(a)) = (0 ® 0)A(a) for all a € A, we need only show that k&) C ker((6 ® 6)A).
Clearly, it suffices to show that k&) C ker((id ® 6) A). To see this, we first observe that,
by the Cauchy-Schwartz inequality,vanishes on k&p). Therefore it induces a unique
stateh; on A, such thath = h o 6. Since ketd) = Ny, it is clear thath, is faithful.
Using the fact that product states separate elements, @b A,, it easily follows that
id® hr : Ay ® Ay — A, is faithful. Suppose now(a) = 0. Thenh(a*a) = 0 and
therefore(id ® hy)(id ® 0)A(a*a) = (id ® h)A(a*a) = h(a*a)l = 0. Consequently,
(id®0)A(a*a) = 0, and thereforéid ® 0) A(a) = 0 as required. Thus, we can well define
ax-homomorphisny; as claimed above.

One can easily check now that is a co-multiplication om,. Since the linear spans of
(1® A)A(A) and(A ® 1) A(A) are dense id ® A, it follows immediately that the linear
spans of1 ® Ar)Ar(Ar) and(Ar ® 1) Ar(Ay) are dense iy ® Ay. Hence,(Ar, Ay) is a
compact quantum group.

If a € A, then(id®h) Ar(0(a)) = (i[dRh)(OR0) A(a) = 0(idRh)A(a) = O (h(a)l) =
hy(6(a))0 (). Similarly, (hy ® id) A (0(a)) = he(0(a))0(1). Hence i, is the Haar integral
of (Ar, Ay).

The injectivity of6 on A follows readily: ifa € A andf(a) = 0, thenz(a*a) = 0. Since
h is faithful on A, we deduce that = 0.

We can therefore define linear maps; 0(A) — C andk; : 6(A) — 6(A), by setting
er(0(a)) = g(a) andir (0(a)) = 0(k(a)) foralla € A. Itis then clear tha# (A) is a dense
Hopf x-subalgebra of A,, Ar) with co-unite, and co-inverse;. Hence, by uniqueness,
0(A) is the Hopf«-algebra associated ta,, Ay). O

We call the compact quantum groug,, A;) described in the theorem threduced
guantum group of (A, A) and we calb the canonical map from A onto A;. Itis clear that
0 is ax-isomorphism if, and only if4 is faithful.

If (A, A)is the universal compact quantum group associated to a discrete Grahen
the reduced compact quantum group(af A) is equal to the reduced compact quantum
group of I'; that is, (Ar, Ar) = (CF(I'), Ar). That Ay = C(I") follows from the fact
that the left kernel of the Haar integral 6, A) is equal to the kernel of the canonical
x-homomorphisn® from C*(I") ontoC;*(I"), as we have observed before. The only other
item that needs to be checked is thgp = (0 ® 0)A, and this easily follows from the
definitions of the co-multiplications o&*(I") andC (I").

If (A, A) is an arbitrary compact quantum group, we say it is co-amenable if the co-unit
gr of (A, Ar) is norm-bounded. We can then extend the co-unitteh@momorphisnz,
on A;. A consequence is that is never simple, if A, A) is co-amenable, since the kernel
of &6 is a closed two-sided ideal of of co-dimension 1.

From our discussion above, it is evident that the reduced (resp. universal) compact quan-
tum group associated to a discrete grdus co-amenable if, and only if;” is amenable.
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Note also that a finite quantum group — that is, a compact quantum gAgup) for which
A is finite-dimensional — is necessarily co-amenable, since in this4aseA.

It is perhaps of some interest to interpret the idea of co-amenability in the context of a
commutative compact quantum grotp(G), A) associated to a classical compact group
G. Since the Haar integral is faithful, as we observed bef@rég), A) is co-amenable if
its co-unit is norm-bounded. This case is trivial, since the co-unit is given by (restriction of)
the evaluation mapf — f(e), wheree is the unit ofG. Thus, a classical compact group
is “co-amenable”.

The following theorem allows us to verify co-amenability without reference to the reduced
compact quantum group. However, its real importance is its assertion that faithfulness of the
Haar integral is a consequence of co-amenability. In practice, it provides a useful method
of showing such faithfulness (see Corollary 2.13).

The first paragraph of the proof of the theorem is taken from the proof of Theorem 8.1
of [14] (the exactness assumption darused in [14] is not needed here).

Theorem 2.2. A compact quantum group (A, A) is co-amenable if, and only if, its Haar
integral is faithful and its co-unit is norm-bounded.

Proof. Clearly, we need only show that (4, A) is co-amenable, theh is faithful. Let

I = N;j. If a € I ando is a positive linear functional od, then (o ® h)A(a*a) =
o(Dh(a*a) = 0, since(id ® h)A(a*a) = h(a*a)l. Hence, sincer ® h is positive,
(0 @ h)(cA(a)) =0forallc € A® A. Because is an arbitrary positive linear functional
on A, this implies(id ® h)(cA(a)) = 0. If T € A* andc = 1 ® b, whereb € A, then we
haveh(b(t ® id)(Aa)) = 7((id ® h)(cA(a))) = 0. Hence(r Q@ id)A(a) € I.

The co-unitg; ande are norm-bounded, by co-amenability, so admit extensipasds
to Ay andA, respectively, which satisfy = ¢,6. It follows thatz (a) = t((ild ® €) A(a)) =
erf((t ® id)A(a)) = ¢(0) = 0. Sincer was an arbitrary element of*, we must have
a = 0. Hence N, = I = 0; that is & is faithful. O

It follows from Theorem 2.2 that co-amenability is preserved under formation of the
tensor product of two compact quantum groups. This is the quantum counterpart of the
statement that a product of two discrete amenable groups is amenable. Recall that the
tensor product of two compact quantum grougg;, 4;) is the compact quantum group
(A, A) = (A1 ® Az, A1 x Ap) with co-multiplication defined by

AMxAr=(d®@FRIid)(A1®A):A— AR A,

whereF : A1 ® Ao — A2 ® A1 denotes the flip map given y(a1 ® a2) = a2 ® a; for
a1 € A1 anday € As. The Hopfx-algebra of(A, A) is A1 ® A, whereA; is the Hopf
x-algebra of(A;, A); the Haar integral and the co-unit @4, A) ares; ® ho ande; ® &2,
respectively, wherg; is the Haar integral ang is the co-unit of(A;, A;).

If (A;, A;) are both co-amenable, then, by Theorem 2.2, their Haar inteyradse
faithful, and thereforé; ® h» is also faithful. HencéA, A) is equal to its reduced compact
guantum group, so we only need to check that the cosy@te, is norm-bounded and this
is obvious, since; are both norm-bounded. Thusi, A) is co-amenable.
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In the reverse direction, ifA, A) is co-amenable, then botld1, A1) and(A», Ay) are
co-amenable. For, faithfulness bf ® h» trivially implies faithfulness of each i1 and
h2; equally easily, norm-boundednesssgf® ¢2 implies norm-boundedness of andes.

Hence, co-amenability afd1, A1) and(A2, A») follows from Theorem 2.2.

This observation allows us to give an example of a compact quantum goup) that is
not co-amenable and that is neither co-commutative nor commutative; vig setC*(F»)
andA; = C(Sg), whereF; is the free group on two generators &ds the finite (compact)
group of permutations on three symbols. Then w&AetA) be the tensor product of these
two compact quantum groups.

We turn now to finding other conditions equivalent to co-amenability or, more generally,
conditions equivalent to norm-boundedness of the cosunit

Recall a finite-dimensional unitary co-representatibe My (C) ® A of (A, A) is said
to befundamental if its matrix elementdUj; (relative to some system of matrix units for
My (C)) generate the Hopf-algebrad associated t0A, A), as ax-algebra. Theeompact
matrix pseudogroups, as defined by Woronowicz [19], are precisely the compact quantum
groups that admit a fundamental unitary co-representation.

The equivalence of Conditions (1) and (2) in the corollary of the following theorem can
be regarded as a generalization of Kesten’s classical characterization of the amenability of a
finitely generated discrete group in terms of the spectrum of the sum of the generators in the
regular representation (see [9], and also [8]). This equivalence, which is due to Skandalis,
is proved in [2]. Its connection to Kesten's result is explained in [3]. The proof of our more
general result is somewhat different.

Theorem 2.3. Supposethat (A, A) isacompact matrix pseudogroup andthat U € My (C)
® A isafundamental unitary co-representation of (A, A).

Weset xy = Y i 1 Uii.

Of coursg, since ||Ujj|| < 1, for all indicesi andj, |Rexy || < N.

The following are equivalent conditions:

. the co-unit ¢ of (A, A) is norm-bounded;

. N belongs to the spectrum of Reyy in A;

there exists a state = on A such that T (Rexy) = N;

. thereexistsa state r on Asuch that = (Uj;) = 1fori =1,..., N.
. for all scalarsig, A1, ..., Apn,

N
>
i=0

Proof. Recallfirstfrom[19, Proposition 1.8] thats uniquely determined ad by ¢ (Ujj) =

8jj for all indicesi and j. Especiallys(Ujj) = 1 for all i, so we haverVZOAi =ce(hol+

Zf\'zlxi Ui)). The implication(1) = (5) follows by noting that ife is norm-bounded, its

norm must be equal to 1, and Inequality (1) is an immediate consequence. To see Condition
(5) implies (4), we note that Inequality (1) implies that the linear functiapatlefined on

the linear span of 1 and the elemebtsby mapping all of these elements to 1Gnis well
defined and has norm equal to 1. By the Hahn—Banach theateextends to a norm-1

arwn R

N
rol+ ZMUH
i=1

=<

: (1)
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linear functionak on A. Sincer (1) = ||t|| = 1, t is a state ofA. Since a state is necessarily
self-adjoint, the implicatiori4) = (3) is clear.

SetXjj = Ujj — §j andX = Zf\’lj=1XﬁXij + Xini"Jf. Using the fact thaE;ilUiTUij =
Z,.N:lUij Ui’jk =1, we haveX = 4(N — Reyy). Hence, the elemem¥ — Reyy is positive.
Therefore,N — Rexy is invertible if, and only if, there exists a positive number such that
N — Rexy > 8. Hence N belongs to the spectrum of Rg if, and only if, 1 (Rexy) = N
for some state of A. That is, Conditions (2) and (3) are equivalent.

Thus, it remains only to show th&B) = (1). Suppose Condition (3) holds, so that
there exists a stateon A such thatr (N — Rexy) = 0 and thereforer (X) = 0. Hence,
r(X;‘Jinj) = t(Xini"Jf) = 0. Letg be the GNS representation associated, tacting on the
Hilbert spaceH, and letx be the canonical cyclic vector associated to this representation,
so thatr (a) = (¢(a)x|x) ande(A)x is dense inH. Clearly,p(Xjj)x = (p(Xi“})x = 0 and
thereforep (Uij)x = (p(UiT)x = §jjx. Hence, ifa is product of matrix element&j; and
Uy, theng(a)x € Cx. SinceU is a fundamental co-representation(df, A), the closed
linear span of such products is equal4cand thereforey(A)x € Cx. Hence,H = Cx
and therefore dirgH) = 1. It follows thaty is scalar-valued and therefogga) = t(a)1
foralla € A. Hencer is a norm-bounded-homomorphism. Moreover, sin¢15'(Xij)|2 <
r(X;‘Jinj) = 0, we haver (Ujj) = §jj = ¢(Ujj) fori, j = 1,..., N. Hence, since the
elementdJj; generate4 as ax-algebragr = ¢ on A and therefore is norm-bounded. O

Corollary 2.4. Wth the same assumptions as in the preceding theorem, the following are
equivalent conditions:

1. (A, A) isco-amenable;

2. N belongsto the spectrum of 6(Rexy ) in Ay;

3. there existsa state  on A, such that 70 (Rexy) = N;

4, thereexistsa state t on A, such that 76 (Ujj) = 1fori =1,... , N;
5. for all scalarsig, A1, ..., AN,

=<

N
>
i=0

Proof. The result follows from the theorem by observing thdtz 6) (U) is a fundamental
co-representation afA,, Ay). O

N
hol+ ZM@(UH)H :
i=1

If U isaunitary co-representation@f, A) onaHilbertspacél/,sothaty € M(K(H)®
A), the multiplier algebra oK (H) ® A, recall that its matrix elements are the elements
of A of the form (w ® id)(U), wherew is a strictly continuous linear map oki(H).
Not every compact quantum group admits a fundamental unitary co-representation but all
admit a unitary co-representation for which the matrix elements generaté-tdgebra
(for example, the matrix elements of the regular co-representation have dense linear span
in the C*-algebra).

If U is any unitary co-representation @, A) on a Hilbert spacéf and the co-unit is
norm-bounded, thefid ® ¢)(U) = 1 in B(H). For, the equalityid ® ) A = id implies
U=(@{d®@i[d®eA)(U) =(d®id®e¢)(i[d® A)(U) = (d®id ® £)(U1aUas) =
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U((id ® )(U) ® 1). SinceU is invertible, we deduce thatg 1 = (id ® ¢)(U) ® 1 and
therefore(id ® €)(U) = 1, as required.
The following represents a partial generalization of Theorem 2.3.

Theorem 2.5. Let U be a unitary co-representation of (A, A) whose matrix elements gen-
erate A asa C*-algebra. Then the following are equivalent conditions:

1. the co-unit ¢ is norm-bounded;
2. there exists a state ¢ of A for which (id ® ©)(U) = 1.

Proof. Takingt = ¢, the implication(1) = (2) is immediate from the remarks preceding
this theorem. To see the converse, suppose given arstéité for which (id ® 7)(U) = 1.
Lety be the GNS representation associated We supposé is the Hilbert space on which
@ acts and that is the canonical cyclic vector far. As in the proof of Theorem 2.3, we shall
show thatp(a) = t(a)lforalla € A. First, leta = (v ® id)(U) be a matrix element df,
wherew is a strictly continuous linear map da(H). We shall show thap(a)x, ¢(a)*x €
Cx. Sincew is linear combination of strictly continuous statesio(H ), to show this result
we may suppose thatis a state. Thefja|| < 1 andz(a) = 0 (((d® 7)(U)) = (1) = 1,
hence,0< t((a—D*(a—-1) =t(@*a)—1t@)—1t@) +7t() <t(D)-1-1+7(1) =
0. Consequently; ((a — 1)*(a — 1)) = 0, from which it follows thatp(a)x = x. Similar
reasoning shows that(a — 1)(a — 1)*) = 0 and therefore(a)*x = x. Since the elements
a = (0 ®id)(U) generated, as aC*-algebra, we can now argue again as in the proof of
Theorem 2.3 to deduce thatA)x = Cx. Hencegp(a) = t(a)l foralla € A, as claimed.
This implies that is ax-homomorphism om.

Now we shall show thatid ® t)A(a) = a for all a € A. To see this, we may clearly
suppose that is a matrix elemeny = (0 ® id)(U), say. Then

(id ® 1) Aa) = (id ® 7)(0 ® id @ id)(id ® A)(U)
=(id® 1) (0w ®id ® id) (U2 U13)
= (0 ®id)(id ® id ® 1)(UapUas)
=(0@Id)U(d®7)(U) ® 1))
=(wIdU1®1)) =a.
We complete the proof now by showing thatz) = ¢(a) for all a € A: We have

7(a) = 1((e ® id)(A(a))) = e((id ® T)(A(a))) = e(a). Hence,r is a horm-bounded
linear map extending and therefore is norm-bounded. O

Let us note explicitly that our proof of the preceding theorem shows thaisfas in
Condition (2), therr is the — necessarily unique — extensioredb A.

Corollary 2.6. Let U be a unitary co-representation of (A, A) whose matrix elements
generate A as a C*-algebra. Then the following are equivalent conditions:

1. (A, A) isco-amenable;
2. there exists a state t of A, for which (id ® 76)(U) = 1.
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Proof. The elemenV = (id ® 6)(U) in the multiplier algebra/ (K (H) ® Ay) is a unitary
co-representation ofAr, Ay) whose matrix elementéw ® id)(V) = 6((w ® id)(U))
generated, as aC*-algebra. The result therefore follows directly from the theoremO

We stated before the preceding theorem that it is a partial generalization of Theorem
2.3. To see why, leU € My (C) ® A be a finite-dimensional unitary co-representation of
(A, A) with matrix elementdJjj (relative to some system of matrix units fiafy (C)). The
equation(id ® v)(U) = 1 is clearly equivalent to the condition thatUij) = &;; for all i
and;j. Reasoning as in the proof of Theorem 2.3, this is easily seen to be equivalent to the
condition thatr (Ujj) = 1 for all i. Hence, the preceding theorem implies the equivalence
of Conditions (1) and (4) of Theorem 2.3.

We shall need the following result for the proof of Theorem 2.8.

Lemma 2.7. Let (A, A) be a compact quantum group for which the Haar integral h
is faithful. Let = be a non-zero x-homomorphism from A to a C*-algebra B. Then the
x-homomorphism, 7 : A > A® B,a — (id ® m)A(a), isisometric.

Proof. Leta € A and suppose that(a) = 0. Thensw(a*a) = 0 and therefore 0=
(h®id) (a*a) = n((h ® id)A(a*a)) = w(h(a*a)l) = h(a*a)7(1). Consequently, since
(1) # 0, we havei(a*a) = 0; faithfulness of: now givesa = 0. Hence;t is injective
and therefore isometric. O

The corollary to the following theorem gives another characterization of co-amenability,
this time in terms of a scalar-valuedhomomorphism on th€*-algebra of the reduced
quantum group:

Theorem 2.8. Let (A, A) be a compact quantum group for which the Haar integral his
faithful. Then the following are equivalent conditions:

1. the co-unit ¢ is norm-bounded;
2. there exists a non-zero s-homomorphismz : A — C.

Proof. The implication(1) = (2) is obvious. Suppose therefore that we have a non-zero
x-homomorphismr : A — C. If U is an N-dimensional unitary co-representation of
(A, 4),then(id® 1) A(Ujj) = (id®‘L’)(Z]]€v:1Uik®Ukj) = Z,’{Vleikr(UM).Also, since the
matrix(t (Ujj)) is a unitary, becauseis a*-homomorphismzyzl(id@)r)A(Uij)r(U|j)‘ =
Z,fszlUikr(Ukj)t(U”)— = Y Uidu = Uil Hence, recalling that! is the linear span

of the matrix elements of finite-dimensional unitary co-representation@ oft), it is
clear that thes-homomorphisnt : A — A, defined by setting (¢) = (id ® t)A(a), is
surjective. Sincé is assumed to be faithful, it follows from Lemma 2.7 thas an isometry.
Therefore, ifa € A, |e(T(a))| = |t ((e ® id)A(a))| = |t(a)| < |la]l = ||T(a)|. Therefore,

¢ is norm-bounded. Henc€?) = (1). O

Corollary 2.9. If (A, A) isan arbitrary compact quantum group, the following are equiv-
alent conditions:
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1. (A, A) isco-amenable;

2. there exists a non-zero x-homomorphismzt : Ay — C;

3. the Haar integral on (A, A) is faithful and there exists a non-zero s-homomorphism
7:A— C.

Proof. The equivalence between (1) and (2) follows immediately from the theorem, since
the Haar integral of A, A,) is faithful. The equivalence between (1) and (3) follows by
combining the theorem and Theorem 2.2. O

As an immediate consequence of the equivalence between (1) and (2) above, we obtain
the following corollary which is a special case of a result in [4].

Corollary 2.10. Let I be a discrete group. The following are equivalent conditions:

1. I" isamenable;
2. there exists a non-zero x-homomorphismrt : C;(I") — C.

If I is a discrete group, then its reduced gra@tipalgebra is given by a concrete faithful
representation on the Hilbert spa&& ™). Given a compact quantum grogg, A), there
is a natural faithful representation @4, A;) whose existence may be deduced from [1].
For completeness, we now present this representation in details. Let — B(H) be
the GNS representation cf associated to the Haar integvabf (A, A) and letz be its
canonical cyclic vector, so that(A)z is dense inH andh(a) = (w(a)z|z) foralla € A.
We denote by - |2 the norm ofH. We setA;; = 7(A) and A, = 7(A), so thatAc is
a unitalC*-subalgebra oB(H) and A, is a dense unitak-subalgebra ofA;.. The map
7 is injective onA. For, ifa € A andn(a) = 0, then||7r(a)z||§ = h(a*a) = 0 and
therefore, by faithfulness éfon. A, a = 0. Hence, we can define linear mapsg : Arc —
Are ® Arc, erc @ Arc — C andire @ Arc — Arc by settingArc(n(a)) = (7 ® m)A(a),
erc(m(a)) = e(a) andkc((a)) = m(k(a)) for all a € A. Clearly, A is a unitalx-homo-
morphism.

Theorem 2.11. Let (A, A) be a compact quantum group and retain the notation of the
preceding paragraph. The map A : Arc — Arc ® Are has a unique extension to a
x-homomorphism Ay : Arc — Arc ® Arc. Thepair (Arc, Arc) isacompact quantum group
with faithful Haar state ¢ given by hc(a) = (az|z), for all a € Ayc. The Hopf x-algebra
associated to (Arc, Are) 1S Arc = 7 (A), with co-unit grc and co-inverse xrc. Themap  isa
morphismof (A, A) onto (A, Arc) and itskernel is equal to the left kernel of h, so that =
induces a faithful representation of A, on H. This representation is an isomor phism of the
compact quantum groups (Ar, Ar) and (Arc, Arc).

Proof. To prove thatA @ Aic — 7n(A) ® 7(A) € B(H ® H) has an extension :
Aic — B(H ® H), we construct a unitary¥ on H ® H. First, define the linear map
W: AQRACH®H - A® AC H® H by settingW(a ® b) = A(b)(a ® 1) for
alla, b € A. We claim thatW is isometric. To see this, let= > .a; ® b; € A® A and
A(by) = Y pak ® b¥ for finitely many elementst, b* € A. Then
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W(c)*W(c) = Z(A(bi)(ai ®1)*Abj)a;®1)
ij
= (af ® D((a})*a; ® BH)*p))(a; @ 1)
ijk
= Za;k(af)*aiaj ® (b,]‘()*bl'»
ijk
and therefore

IW(@II5=(W(©IW(e) = (h @ h)(W(c)* W(c) = Y _h(aj (a;)*alaj)h((b})*bh)
ijl

=>h (ai* [Z(af)*aéh((bf)*bé)} a,-> = > h(a[(d ® ) A(bfb]a;)
i

K ij

=Y h(a}h(bibj)la;) = > hiafa;)h(b}b;)
ij ij

=(h®h) (Za;"a, ® b;.*bj) = (h ® h)(c*c) = (c|c) = [cl|3.
ij

HenceW is isometric, as claimed. Sincé® A is equal to the linear span &fA(A ® 1),

we haveW (A4 ® A) = A ® A. It follows thatW extends from the dense subspate® A

to a unitary onH ® H. We shall denote this extension also Wy
We claim that for alk € A,

Are((@)) = W(r (1) @ m(a) W™, )

equivalently,Aic(r (a))W = W(r (1) ® m(a)). These operators are equal if they act iden-
tically on elementary tensors of the dense subspa@.A of H ® H. Thus, leth,c € A
and observe that

Arc(@ (@)W ® ¢) = Arc(m (@) A() (0 ® 1) = ((m @ 1) A(a)) A() (b ® 1)
=A@AC)bRD =A@@OLRL =W(OH®ac)
=W @) @ (@) (b c).

Thus, Eq. (2) holds and it follows that,; : Ajc — A ® Ac € B(H ® H) is norm
decreasing. Consequently, it admits-aomomorphism extensiafc : Ac — Arc ® Are.
That A¢ is a co-multiplication orA ¢ is an obvious consequence of its restriction4@
being one, and density of;c in Ac. It follows directly, from the fact that the linear spans of
(A®1)AAand(1® .A)AA are each equal td ® A, that(Arc, Arc) is a compact quantum
group. Thatr is a morphism of compact quantum groups is obvious.

Sinceh = 0 on kel(r), it induces a unique stafg; on A, for which ic o 7 = h.

Thereforehc(a) = (azlz) for all a € Ac. It is easily verified that,c is the Haar state



142 E. Bédos et al. / Journal of Geometry and Physics 40 (2001) 130-153

of (Arc, Arc). Suppose nowt € Arc andic(a*a) = 0. SinceN, is a two-sided ideal in
Are, @b € Ny, for all b € Ay and thereforéic(b*a*ab) = 0. Hence (abzlabz) = 0 for
all b € Ay, which shows that = 0. Thus,hc is faithful. It clearly follows that the left
kernel ofh is equal to the kernel of. Hence, the representation #f on H induced byr
is faithful and then, by construction, an isomorphisn{&f, A;) onto (A, Arc).

Finally, it is clear thatr (A) is a dense Hopk-subalgebra of A,c, Arc) with co-unit
erc and co-inverse ¢, and therefore it is the Hopf-algebra associated (¢, Are), by
unigueness. O

We turn now to an application of some of our results to the prototypical example of a
compact quantum group, the quantization of(3lconstructed by Woronowicz [19,22].
We shall show that it is co-amenable, from which we shall obtain the known, and non-trivial,
result that its Haar integral is faithful. It also follows from Banica’s more general result [2,
Corollary 6.2] which uses the theory &*-deformations. Our quite elementary proof is
totally different.

Letg be areal number for which @ |g| < 1. Let(A, A) = SU,(2), and lete andy be
the canonical generators af, satisfying the conditions of Table 0 of [19]. Lete Z and
m,n € N. Setaym = a®y™y*" wherea® = o, if k > 0 anda® = (& %)*, if k < 0.
Recall that these elementg,, form a linear basis for the Hopf-algebra4 associated to
(A, A) and thath (axm) = 0, if £ # 0 or if m # n [19, Eq. (A1.8)].

TakeU to be the fundamental irreducible co-representation qf@Ugiven by

o _ *
U:( qy).
y «of

Before stating the following theorem, we make an elementary observatidhidfthe
forward unilateral shift on a Hilbert spaég with orthonormal basi¢e,, ), <n, SO thatve, =
en+1, then there exists a stateon B(H) such that (V) = 1 andz(K) = 0 for all compact
operatorsk € B(H). To see this, one observes that the imag¥ af the Calkin algebr&
of H is a unitary containing 1 in its spectrum and therefore there exists a stéatevbise
value at this unitary is equal to 1. The required stateBoH ) is then the composition of
the state orC and the quotient map from(H) to C.

Theorem 2.12. The compact quantum group SU, (2) is co-amenable.

Proof. As before, let(A, A) = SU,(2) and letee andy be the canonical generators of
A. Setc, = (1 —¢®)Y? for n € N. Recall from Appendix A.1 of [20] tha# admits a
representatiop on a Hilbert spacé? with an orthonormal basi&;, ), wheren € N and
k € Z, such that

p(a)enk = cpen—1k and o(y)enk = qnen,k+l

and that

h(a) = (1= g% _(¢(@)enoleno).

n=0
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It follows immediately thati(a*a) = O if, and only if, ¢ (a)e,0 = O for alln € N. Using
the equation®(y™)eno = ¢"Menm ande(y*™)eno = ¢""e,,—m for m > 0 and the fact that
ay™ anday*™ belong toN,, if a does, we get that(a*a) = 0 if, and only if,¢(a) = 0.
Hence, we get an induced faithful representatioaf A, on H given by 6(a) = ¢(a).
Now for k € Z, let Hy be the Hilbert subspace &f with orthonormal basigenk),en-
Obviously,H = &y Hy, andT = ¢(«) reduces each spaég, so thatT = &, Ty, where
Ty is the restriction of” to Hy.. We havelenk = cpen—1.k, SO thatly = U} Dy, whereUy is
the forward unilateral shift on the basisy),, of H, and Dy is the diagonal norm-bounded
linear operator orH;, defined by settingDy (enk) = chenk. Since lime, = 1, it is clear
that D, = 1+ Ly, whereL, is a compact operator oHy. Hence, Ty = U; + U/ L. By
the remarks preceding this theorem, there exists a gtateB(Hy) such that (7;) = 1.
Fork e Z, chose positive numberg such that) ", 77 = 1. Now define a state on
the C*-algebra® B(Hj) containingT by settingr (S) = Y, .zt%t (Sp), if § = (Spk €
@1 B(Hy). Clearly,7(T) = 1. Now lett’ be the statey on A,. Thent’(0(a)) = t(T) =1
and therefore’0(Rexy) = t/0(a) + (r'0(x))~ = 2. Hence(A, A) is co-amenable, by
Condition (3) of Corollary 2.4. O

Corollary 2.13 (Nagy). The Haar integral h of SU, (2) is faithful.
Proof. This is a consequence of the preceding theorem and Theorem 2.2. O

There is an alternative way of proving ${2) = (4, A) is co-amenable, using the
fact thatA is of Type |, as aC*-algebra [19, Theorem A2.3]. Sineg is unital, it admits a
maximalideall. SinceA, /I is a Type | simple unitaC*-algebra, it is isomorphic tdf ; (C)
for some positive intege¥. Thus, we have a surjectivehomomorphismr from A, onto
My (C). The existence of a faithful, tracial state &y (C), together with the commutation
relations of [19, Table 0] for the canonical generatoendy , forces the image (y) of y in
My (C) to be equal to zero antl(«) to be a unitary. Since (o) andx (y) generatéy (C),
thisimplies thaiM (C) is commutative. Henc&y = 1 andMy (C) = C. Thus,A; admits a
*-homomorphism ont@ and it now follows from Corollary 2.9 that S\¢2) is co-amenable.

3. Theuniversal quantum group

In this section we first give a detailed account on the construction of the universal compact
qguantum group associated to an arbitrary compact quantum group. One way to construct
such an object relies on Baaj and Skandalis’ theory [1] of regular multiplicative unitaries.

A general construction for locally compact quantum groups has recently been given by
Kustermans [10]. However, our approach, which is briefly sketched by Woronowicz [21]
for compact matrix pseudogroups, is much less technical and is therefore included. The
reduced quantum group has the advantage that the Haar integral is always faithful, whereas
its co-unit need not be norm-bounded. For the universal quantum group the situation is the
opposite; its co-unit is always norm-bounded, whereas its Haar integral need not be faithful.

Let (A, A) be a compact quantum group. Defihe||, on A by

lallu = supz ()],
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where the variabler runs over all unitak-homomorphismsr from A into B(H,) for a
Hilbert spaceH,; (theunital x-representations of A).

Lemma 3.1. The function || - ||y : A — [0, co] isa C*-norm on A which majorises any
other C*-normon A.

Proof. We first need to show thdt|| is finite for alla € A. Let (U%),, be a complete set
of inequivalent, irreducible unitary co-representationgAf A); then the matrix elements
Ui‘J?‘ linearly spanA. Clearly, it suffices to show than‘J?‘Hu < ooforall @ andi, j. Suppose
thenz : A — B(H) is a unitalx-representation ofA on some Hilbert spacé. Since
YU UG =1, we have(Uﬁ‘ *Uj‘i’ =1- Zk#(Uﬁ)*Uﬁi‘, and therefore

0< U T =) — Y @UL) 7(UR) < 7(D).
k#j

Hence,|I7T(Uj‘i")||2 = ||(n(Uﬁ‘))*n(Uj°i‘)|| < |l=(D| = 1. It follows that||Ui‘j"||u is finite.
(Note that although & ||a*a||I —a™*a foranya € A, we cannot concludgz*a|| I —a*a =
b*b for some elemerit belonging ta4. This is why the preceding argument had to be more
careful than one might first expect and had to use the rather strong propery ihéte
linear span of the matrix element&’.)

It is clear now that| - ||, is aC*-seminorm onA and sinceA admits a faithful unital
x-representation| - ||y is, in fact, aC*-norm. That]| - ||, majorises any othef*-norm on
A is clear from its definition. O

We defineA to be theC*-algebra completion oft with respect to th€*-norm|| - ||,. As
usual, we identify4 with its canonical copy insidg,. TheC*-algebraA, has the universal
property that ifr : A — B is a unitalx-homomorphism from4 to a unitalC*-algebra
B, it extends uniquely to a-homomorphism from4, to B, sincern is easily seen to be
norm-decreasing od equipped with its universal norm.

In particular, thex-homomorphismA : 4 - A® A C Ay ® Ay extends to a
x-homomorphisma : A, — Ay ® Ay. It is easily verifiedA is a co-multiplication on
Ay. Since the linear spans of the ses® 1) AA and(1® A)AA are each equal td ® A,
it follows immediately tha( Ay, A) is a compact quantum group. We call it tivaiversal
compact quantum group associatedAg A).

SinceA s, by construction, a dense Hopbubalgebra ofA,, A), itis the Hopf«-algebra
associated toA,, A), by uniqueness.

Note also that the co-unit of A, being ax-homomorphism from4 to C, extends to a
x-homomorphisnz, from A, to C. By density ofA in A, the equalitiege ® id)A(a) =
(id®e)A(a) = a, which hold for alla € A, extendtaey ®id)A(a) = ((d®ey)A(a) =a
foralla € Ay. Hencegy must be the unique extensionAg of the co-unit of(Ay, A). The
important point we wish to emphasize here is {t#af, A) has thus a norm-bounded co-unit.

Clearly, by the universal property ¢fi,, A), there is a~-homomorphismy from Ay
onto A extending the identity-isomorphism fromA to itself. Also, Ay = (¥ @ ) A. We
call » thecanonical map from A, onto A. Likewise, ifo is the canonical map from onto
Ay, we call the compositiosyr the canonical map from Ay onto Ay.
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Clearly,hyr is the Haar integrah, of (Ay, A); hencehy = h0y. Sinceh, is faithful, it
follows thatN,, = ker(9y). From this it is immediate that the reduced compact quantum
group of(Ay, A) is (isomorphicto) A,, Ar) and that v is the canonical map fromfi, A)
onto(Ay, Ay). Therefore(Ay, A) is co-amenable if, and only ifA, A) is co-amenable.

We summarize the preceding discussion in the following theorem.

Theorem 3.2. Let (A, A) be a compact quantum group. Then A is the Hopf x-algebra
associated to the universal compact quantum group (Ay, A). The co-unit of (Ay, A) is
norm-bounded. Finally, the reduced compact quantum group of (Ay, A) is (isomorphic to)
(Ay, Ay), sothat (Ay, A) isco-amenable if, and only if, (A, A) is.

It is quite obvious that the universal compact quantum gr@@fy "), A) associated
to a discrete groug” is its own universal compact quantum group; that ig4f A) =
(C*(IN), A), then(Ay, A) = (A, A). Moreover, if(A, A) = (C(I), Ay), then(Ay, A) =
(C*(I'), A). This is the motivating example for the general definition of the universal
compact quantum group.

Suppose nowA, A) is an arbitrary compact quantum group. It is easy to see that if
(B, @) is a compact quantum group whose associated Hapfebra53, @) is isomorphic
to (A, A), then(By, @) is isomorphic to(Ay, A). In particular, the universal compact
guantum group associated @, Ay), or to (Ay, A), is isomorphic ta(Ay, A).

We call a compact quantum grodg, A) universal if (A, A) = (Ay, 4), i.e. if the
canonical maps from A, onto A is injective. Equivalently(A, A) is universal if, and only
if, the given norm onA is its greatesC*-norm. We will show in Corollary 3.7 that any
co-amenable compact quantum group is universal.

We prove now a striking automatic continuity result for positive linear functionals on the
Hopf x-algebra of a universal compact quantum group. Recall that a linear functiomal
ax-algebraB is calledpositiveif 7(b*b) > 0 forallb € B.

Theorem 3.3. Suppose that (A, A) is a universal compact quantum group. Then every
positive linear functional t on A is norm-bounded.

Proof. We form the GNS representation df with respect tor; since the maga, b) —
t(b*a) is sesquilinear, the inequality (b*a)|2 < t(b*b)t (a*a) implies that the left kernel
N; of t is a left ideal ofA. Hence, the quotient spack/ N, is a inner product space with
inner product given bya + N;|b + N;) = t(b*a), wherea, b € A. Denote the Hilbert
space completion by and its norm by - ||2. Define the operata¥/,, : A/N; — A/N;
by settingM, (b + N;) = ab+ N, foralla, b € A.

We shall show now that, is norm-bounded for alt € A. Since the mapy — M,,
is linear, it suffices to show boundedness do& Ui‘J?‘, where(U%),, is a complete set of
inequivalent, irreducible unitary representationgof A) andUi‘j" are the matrix elements
of U%. We have for alb € A,

b*b — b* (U UFb = b* [ Y (WU UL | b= (UEb)* (UZh) = .
k#j k)
Hence | USb+ Ny |13 = t(b* (U UE'b) < ©(b*b) = ||b+ N¢ |13, sothat M, || < 1. (This
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kind of argument was used tacitly in the proof of the generalized Tannaka—Krein theorem
in[21].)

Hence for alla € A, we may extendV, to a norm-bounded operatat(a) on H. The
correspondingmagr, : A — B(H),a — m(a),is obviously a unitak-representation ofl.
By the universal property of, this map extends to-ehomomorphismr : Ay, — B(H).
Since for alla € A, t1(a) = (7 (a)x|x), wherex = 1+ N, we have

(@) = [(r(@)x|x) < |z@lIx]|5 = lI7(@)]7(1*1) < llallyr (D).

Hence,r is norm-bounded with respect to the univer€dknorm onA. Since(A, A) is
assumed to be universal, this norm is equal to the given norg.on O

WhenA is a unitalC*-algebra, one may consider tGé-algebra invariant consisting of all
non-zerox-homomorphisms from to C, i.e. of all unital multiplicative linear functionals
on A. This (possibly empty) set is clearly compact in the relative Wweagology inherited
from A*. Of course, whem is commutative, it is precisely the Gelfand spectrumtof-or
some other classes of (hon-simpi&)-algebras, this generally rather poor invariant is of
some interest. For example, wharis the universal compact group associated to a discrete
groupr, itis easily identified with the dual group of the abelianized group ¢éee [18])
and therefore it is computable in many cases. We will show below that this invariant is a
compact group for any universal compact quantum group.

We need a lemma which may be known to specialists, but for which we could not find a
suitable reference in the literature.

Lemma 3.4. If (A, A) isa compact quantum group, the unital multiplicative linear func-
tionalson A formagroup under themultiplication, (z, o) — txo,wheretxo = (1®0c)A.
The unit ise and the inverse of the element t is t«. Moreover, the x-homomor phisms from
A onto C form a subgroup (which may be proper).

Proof. Thatthe operationis closed and associative and the co-unitis a unit for this operation
is well known. We prove first that the inverse of the elemeistz k. To seer * (k) = ¢, let

a € A,andobserve thdt *(t«))(a) = Q1K) A(a) = t(m(IdRKk)A(a)) = 1(s(a)l) =
¢(a). Herem : A ® A — A is the linearization of the multiplicatiosl x A — A. We
used the fact that ® 1« = Tm(id ® «) which is a consequence of the multiplicative
property enjoyed by. That(tx) * T = ¢ is similarly proved. Now ift : A — Cis a
x-homomorphism, thenk is also. We prove this indirectly. The mép= (id®t)A : A —

A is ax-homomorphism, since is 1. Moreoverz ((t«)(a)) = (t * tk)(a) = £(a) = a
and likewise(tk)(t(a)) = ((tk) * 7)(a) = &(a) = a. Hence,(tk)" is the inverse of
and it is therefore alsoahomomorphism. Finally, sincex = ¢ o (t«)"is a composition
of x-homomorphisms, it is one also. Hence, thhomomorphisms fromd onto C form

a subgroup, which may be proper since multiplicative linear functionalssealgebra do
not necessarily preserves adjoints. O

Theorem 3.5. If (A, A) isa universal compact quantum group, then the set G of unital
multiplicative linear functionals on A formsa compact topological group under therelative
weak * topology and the multiplication, (t,0) — 7 %o, Wheret x o = (1 ® o) A.
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Proof. Asbefore, closure and associativity of the multiplication operation is well known and
since the co-unitofA, A) is norm-bounded, its extensionAcexists and provides a unit for
G. If T is a unital multiplicative linear functional oA, it is necessarily a-homomorphism.
Hence, ift is its restriction ta4, the functionak « is also ax-homomorphism, by the pre-
ceding lemma. By universality afA, A), t« admits an extension to-ahomomorphism,

o say, onA. Since(r ® 0)A(a) = (0 @ t)A(a) = e(a) for all a € A, the same equal-
ities hold for alla € A, by continuity. Thusg *x o0 = o * t = ¢. It is straightforward
to check thatG is a weakK closed subset of the unit ball of* and therefore, by the
Banach—-Alaoglu theorend; is weak compact. It is also easily checked that the multipli-
cation operation is wedkcontinuous, as is the inversion operation> 7 1. This proves the
theorem. O

As an example, letA, A) be the compact quantum group g@), whereq € R and
0 < |g| < 1. Being co-amenablgA, A) is universal. Letw andy be the canonical
generators ofi. If T belongs to the groug of multiplicative linear functional o, then
the equationsia™ + yy* = 1 = a*a + ¢%y*y imply thatt(y) = 0 andz(«) belongs
to the unit circle grouf. Conversely, giveh € T, the universal property enjoyed by
implies that there exista — necessarily unique — elemendf G for which t(«x) = A
(andz(y) = 0). Sincede = ¢ @ @ — gy* ® y, we have(r * o)(x) = t(a)o («) for
all 7,0 € G. Hence the mapr — (@), is a group isomorphism fror& onto T. It is
trivially continuous, so that it is also a homeomorphism (since the spaces are compact and
Hausdorff). ThusG = T, as topological groups.

Lemma 3.4 can be used to give an alternative proof of Corollary 2.9Alen\) be a
compact quantum group and suppose giverr@momorphisnt : A — C. Of course, its
restriction toA is therefore a-homomorphism, from which it follows thatc is one also.
Hence, by [14, Lemma 10.2z«)" is an isometry (we are retaining the notation used in the
proof of Lemma 3.4). Since = t o (t«)" is the composition of two norm-bounded maps,
it is norm-bounded and therefo(d, A) is co-amenable.

We now come to one of the main results of the theory. It especially confirms that the Haar
integral of a co-amenable compact quantum group is faithful. The equivalence between
(1) and (2) shows that our definition of co-amenability agrees with the one considered by
Banica [2,3].

Theorem 3.6. The following are equivalent conditions for a compact quantum group
(A, A):

1. (A, A) isco-amenable;

2. the canonical map from Ay to A, isa x-isomorphism;

3. the canonical maps from A, onto A and A onto A, are *-isomor phisms;
4. the Haar integral hy of (A, A) isfaithful.

Proof. If Condition (1) holds, theriAy, A) is co-amenable, by Theorem 3.2 and therefore
hy is faithful, by Theorem 2.2. Thugl) = (4). Sincehy = hyy = h0, itis clear that
Condition (4) implies (2). The equivalence of Conditions (2) and (3) is trivial. Suppose now
that (2) holds and let, be the extension of the co-unit @4y, A) to Ay Theney(8y) lisa
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non-zerocx-homomorphism o, and therefore, by Corollary 2.94, A) is co-amenable.
Thus,(2) = (1). This proves the theorem. O

The following is now immediate from the theorem, from Theorem 3.3 and from
Theorem 3.5.

Corollary 3.7. Let (A, A) be a co-amenable compact quantum group. Then (A, A) is
universal. Especially, every unital x-homomorphismfrom A to a unital C*-algebrais nec-
essarily norm-decreasing. Further, every positive linear functional on A is norm-bounded.
Finally, the unital multiplicative linear functionals on A form a compact group.

Note that co-amenability imposes a norm-boundedness condition on just a single positive
linear functional (the co-unit of the reduced quantum group). However, the corollary shows
it implies a much stronger norm-boundedness result.

The equivalence between (1) and (3) in Theorem 3.6 may be rephrased as saying that
a compact quantum groupi, A) is co-amenable if, and only if, it is both universal and
reduced. Note in this connection ti@it(F2) ® C; (F2) is an example of a compact quantum
group which is neither universal nor reduced, since, obviously, its Haar integral is not faithful
and its co-unit is not norm-bounded.

If (A, A) is an arbitrary compact quantum group, we know that|, is the greatest
C*-norm on the associated HogfalgebraA. We define aC*-seminorm onA by setting
llall = |16(a)| foralla € A. Thisis, in fact, aC*-norm, sincé is injective onA. Therefore
we can regard not onlyA,, A) and (A, A) as compact quantum group completions of
A, but (A;, Ar) also. When we say that a compact quantum grop Ac) is acompact
guantum group completion of .4, we mean not only thatl is a dense unita¢-subalgebra
of the C*-algebra, but also that the co-multiplicatiat extends the co-multiplicatior
of A. We shall call aC*-norm|| - || on A regular if it is the restriction taA of the norm of
a compact quantum group completiofc, A¢) of A. Thus, the giverC*-norm on.A and
the normg| - ||y and|| - ||; are regular.

We show now thaf - | is the least regulaf*-norm on.A.

Theorem 3.8. Let (A, A) be a compact quantum group and | - ||c be a regular C*-norm
on A. Then |lallr < llallc < llally for all a € A. If (A¢, Ac) is the compact quantum
group completion of A with respect to || - ||¢, then there exist unique x-homomor phisms
Yo Ay — Acand6; 1 Ac — A; extending, in each case, the identity automor phism on

A. Both maps are quantum group mor phisms.

Proof. Given the mapg/. andd. exist, it follows trivially from density ofd in A, andAg,
respectively, that they are unique and are quantum group morphisms. The norm inequality
Il -llc < Il - lluis already known and the existence of the myapis obvious. If we show

Il 1lr <l llc, the existence df; follows trivially. We turn now to showing this inequality.
Before proceeding, let us first observe thiata)| < |la||c for all a € A. Let he denote

the Haar integral ofAc, Ac). When we regardd as a Hopfx-subalgebra ofAc, Ac) and

of (A, A), as we do here, we have(a) = h(a) for all a € A, by unigueness of Haar

integrals. Consequently;(a)| = |hc(a)] < |lallc, as claimed.
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Again suppose € A. Since the Haar integral of (A, Ay) is a faithful state ofd, it
follows from [14, Theorem 10.1] that

la*alle = 10(2)*0(a)| = lim[2((0(a)*6(a)))]".

Using the fact that = k6, we get|a*ally = lim[h(a*a)")]*/". By our observations in

the preceding paragraph(a*a)™) < ||(a*a)"||c. Thereforela*a|l; < Iim||(a*a)"||é/" =

la*allc and hencéla|; < |lallc, as required. O

Corollary 3.9. Let (A, A) beacompact quantumgroup with associated Hopf x-algebra A.
Then (A, A) is co-amenableif, and only if, .A admits only one quantum group completion
(up to isomorphism).

Proof. This follows immediately from the theorem and the observation tHAatA) is
co-amenable if, and only ifl,- |lu = || - |Ir, @S norms ot; this observation is an immediate
consequence of Theorem 3.6. O

The qualifying wordregular may not be dropped in the statement of Theorem 3.8. This
may be seen as follows; |€t denote a discrete group. Sgt, A) = (C*(I"), A), and
recall thatA is the group algebra of". Let W be a unitary representation @f on a
Hilbert spaceH and denote byr the associated representation(@f(I") on H, so that
w(C*(I')) = C*(W), whereC*(W) denotes th&*-algebra generated by &, (x € I').
Then define &*-seminorm| - ||, on.A by setting|la|l, = |7 (a)|. Assumethal - ||, isa
C*-norm onA; that is,r is faithful on.A. Then the completion oft with respect td| - ||,
may be identified withC*(W).

If we now assume that Theorem 3.8 holds without the qualifying wegdlar, the
regular representatioh of I" is clearly weakly contained ifV; that is, there exists a
x-homomorphisny from C*(W) onto C*(L) satisfying¢p(W,) = L, forall x € I.

If we also assume thaf is amenable, thep is a x-isomorphism (since it clearly ad-
mits an inverse in this case). Now sEét= Z. ThenC*(L) = C(T) and L1 has spec-
trum T. This forcesW; to have spectruni also. To get a contradiction we need now
only show W1 does not have to have spectruim To do this, choose a unitary on

a Hilbert space with infinite spectrum not equalTo This induces a representatidvi

of Z and the corresponding homomorphismis injective onC(Z), since spV) is infi-
nite (this implies all the powers, ¥, V2, ... are linearly independent). Thus, this repre-
sentationW satisfies the required conditions and the spectruiof= V is not equal
toT.

An open question in this setting is whethr ||, is necessarily regular wheneveris
weakly contained ifW. We doubt that the answer is positive. It is worth mentioning here
that Woronowicz shows in [19, Theorem 1.6] thatfifis finitely generated and is a
faithful representation of” such that ® W is (strongly) contained in a multiple d¥,
then|| - || is regular. However, the only known representations satisfying these assump-
tions seem to be the universal and the regular ones, and the external tensor product of such
representations.
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4. Quantum semigroups and co-amenability

In this short section we give a sufficient condition ensuring that a compact quantum
semigroup is a compact quantum group. Recall tltahgpact quantum semigroup is a pair
(A, A) consisting of a unitaC*-algebraA and a co-multiplicatiom : A — A ® A. Of
course, if, in addition, the linear spans of the spaee® 1)AA and(1 ® A)AA are each
equal toA ® A, then(A, A) is a compact quantum group. Haar integral on a compact
guantum semigroupA, A) is defined in the usual way as a state/oan A for which we
have(id ® h)A(a) = (h ® id)A(a) = h(a)l for alla € A. It is trivial to verify that at
most one Haar integral can exist. Neither every compact quantum semigroup admits a Haar
integral, nor does the existence of a Haar integral imply that a compact quantum semigroup
is a compact quantum group [14].

A bounded co-unit for a compact quantum semigroyp, A) is defined as a unital
x-homomorphisna from A to C such thatforalk € A, (¢ ®id)A(a) = (Id®e&)A(a) = a.
The example given in [14] of a compact quantum semigroup having no Haar integral has got
a bounded co-unit. Thus, the existence of a bounded co-unit does not ensure that a compact
guantum semigroup is a compact quantum group.

We shall need some notation for the following two resulta, b € A, we writea * (hb)
for the elementh ® id) (b ® 1) A(a)) and(ha) * b for the elementid ® h)((1® a) A(b)).

Lemma 4.1. Let (A, A) be a compact quantum semigroup admitting a Haar integral h.
Thenfor all a, b € A, theelement 1®a xhb belongsto the closed linear spanof (A® 1) AA.
Likewise, (ha) * b ® 1 belongsto the closed linear span of (1® A)AA.

Proof. If F: AQ A — A® Aisthe flipautomorphism, then tlopposite compact quantum
semigroup(A, FA) also has the stateas its Haar integral andas a bounded co-unit. It
follows that if we show that ® a x hb belongs to the closed linear span(df® 1) A A, then

we can deduce from this result applied(tb, FA) that(ha) * b ® 1 belongs to the closed
linear span of1® A)AA. The demonstration that@ « * hb belongs to the closed linear
span of(A ® 1)AA is given in the proof of Theorem 3.3 of [14]. The strong hypotheses
of Theorem 3.3 are not needed for our result, which only needs the factAhat) is

a compact quantum semigroup admitting a Haar integral, as can be verified by a careful
reading of the proof in [14]. O

Theorem 4.2. Let (A, A) be a compact quantum semigroup admitting a faithful Haar
integral and a bounded co-unit. Then (A, A) is a co-amenable compact quantum group.

Proof. Ifwe showthai A, A)isacompactquantum group, its co-amenability follows from
Theorem 2.2. By the preceding lemma, we then only show that the closed lineat span
the elementa * hb, wherea, b € A, and the closed linear spaof the elementgha) = b,

are both equal td. For, in this case, ® A andA ® 1 are subsets of the closed linear spans
of (A1) AAand(1® A)AA, respectively, and therefore each of these closed linear spans
is equal toA ® A, thereby ensuringA, A) is a compact quantum group. Co-amenability is
then immediate. We shall show only thiat= A; the proof thatR = A is similar. Arguing

by contradiction, suppose that£ A, so that there exists a non-zero elemert A* that
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vanishes orL. Thent(a x hb) = O for alla, b € A. Thus,(t ® hb)A(a) = 0O; that is,
h(b((t®id)A(a))) = 0. By faithfulness oh we deduce thatr ®id)A(a) = 0. Applyinge
nowwe get0= ¢((t®id)A(a)) = 1((ild®e)A(a)) = t(a). Henceg = 0, a contradiction.
Therefore,L = A, as required. O

The question arises as to whether one can drop the faithfulness requirement on the Haar in-
tegralk inthe preceding theorem. The answer is no. To see this{etC (D), theC*-algebra
of continuous complex-valued functions on the closed unit Bis& co-multiplication A
on A is given by settingA(f)(s,t) = f(st) for all s,¢ € C. The linear functionabg on
A defined by evaluation at the origifg(f) = f(0), is a Haar integral fofA, A) and
the functionals; is a bounded co-unit. Butd, A) is not a compact quantum group [14,
Proposition 2.2].

Appendix A

For the convenience of the reader we gather here some basic facts about compact quantum
groups (see [11,14,20] for more information).

A compact quantum grou, A) consists of a unital’*-algebraA and a unitak-homo-
morphismA : A — A ® A (called the co-multiplication) satisfying

(d®A)A=(AR®id)A

and such that the linear spans(tf® A)AA and(A ® 1)AA are each dense in ® A. A
morphism from (A, A) to a compact quantum groyp, A’) is a unitalx-homomorphism
7w . A — B satisfyingA’'n = (7 @ ) A.

There exists a unique staieon A called the Haar integral afA, A) which satisfies

(h®id)A = (id®h)A = h()L

By a Hopf x-subalgebrad of a compact quantum groufi, A) we mean a Hopf
x-algebra such thad is ax-subalgebra ofA with co-multiplication given by restricting the
co-multiplicationA from A to A. The co-unite : A — C and the co-inverse : A — A
of A are linear maps satisfying

(e®idA=(d®s)A =id, mk QId)A =m(id @ k)A = e(-)1,

wherem : A ® A — A denotes the multiplication map. The co-uaiis known to be a
x-homomorphism.

Any compact quantum grou@, A) has a canonical dense Hopfsubalgebrad con-
sisting of the linear span of the matrix entries of all finite-dimensional co-representations of
(A, A). By abuse of languageandx are also referred to as the co-unit and the co-inverse
of (A, A). We call A the associated Hopfalgebra of(A, A).

The associated Hopfalgebra of a compact quantum group has the following uniqueness
property (which is stated without proof in [11]).

Theorem A.1. The associated Hopf x-algebra A of a compact quantum group (A, A) is
the unique dense Hopf x-subalgebra of (A, A).
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Proof. Let B be another dense Hopfsubalgebra ofA, A). We must show thatl = B.
First we show thaf3 is the linear span of the matrix entries of those finite-dimensional
co-representations which have matrix entries belongirig} tbhis will immediately imply
that3 C A. Thus letx € B. Then we may writeA(x) = ) ,x; ® y; for finitely many

xi, yi € B with {y;} linearly independent. Pick linear functionglg} on 5 such that

& (y;) = gjjforalli, j. Then

A =(dQId®E)Y A(x) ®y; = (d®id® &) (A ®id)A(x)
J

=([d@id® &)(id® A)A(x) =Y x; ® (id ® &) A(y))
J

for all i. Thus, if we let{e;} denote a linear basis for the vector subspacB spanned by
{x;}, there exist finitely many elemengs wy in B such that

Alx) = Zei ®z and A(e)) = Zek ® wij
i k

for all j. Now

Y a@uk®ug=Y Ale) ® wg = (A®id)Ale)) = (id ® 4)Ale))
k.l k

= Zez ® A(wyj),
]

so by linear independence ff;}, we get

Awy)) = Zwlk ® wyj
k

for all j, I. It follows thatw = (wj)) is a finite-dimensional co-representation(af, A)
with matrix entries belonging t8. Furthermore, the elementis a linear combination of
the matrix entries ofv because

x=(>{d®e)AX) =) ez)ei =) e @id)A(e) = Y s(zie))wji,
i i ij

whereg is the co-unit of3. This proves thaBB C A.

To prove the converse inclusion, first observe & the linear span of the matrix entries
of those finite-dimensional irreducible unitary co-representationgiofA) with matrix
entries belonging t#. To see this, consider the co-representaticronstructed above, and
define elementsjj = wjj + (6jj — e(wjj))I € Bforalli, j, wheres now denotes the co-unit
of A. Itis easily checked that = (vj) is a co-representation 0, A). Sincee (vjj) = §jj
for all i, j, the co-representatianis invertible with inverse—1 = (k (vi))), wherex is the
co-inverse of4. Now it is known [11,19] that any invertible co-representation is equivalent
to a direct sum of irreducible unitary ones. Since the invertible co-representatias
matrix entries inB, its irreducible components are easily seen to also have matrix entries
belonging tos. It then follows that5 is a linear span of the required sort.
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To conclude thatd c B, we now show that every finite-dimensional irreducible unitary
co-representation @A, A) is equivalent to one with matrix entries belongingtoAssume
for contradiction, that = (vjj) is a finite-dimensional irreducible unitary co-representation
not equivalent to any finite-dimensional irreducible unitary co-representationiu;j) with
matrix entriesujj belonging toB. From [14, Theorem 7.4], we get thaujjvg) = O for
all i, j, k, 1. SinceB is linearly spanned by elements of the typg as observed above,
andB is dense inA, this implies that:(avy) for all £,/ anda € A. In particular, we get
h(vgva) = 0, and thereforey = O for all £, 7, sincer is faithful on A. This is impossible
asv is unitary. O

Note that the first part of the proof shows this maximal among all Hopf-subalgebras
of (A, A).
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